ПЕРСПЕКТИВИ ВИКОРИСТАННЯ ПОКАЗНИКІВ КОАКТИВАЦІЇ ДЛЯ АНАЛІЗУ ВЗАЄМОДІЇ СКЕЛЕТНИХ М’ЯЗІВ ПІД ЧАС ВИКОНАННЯ РУХІВ

Lyubomyr VOVKANYCH, Mariia FEDKIV

Анотація


Метою нашого дослідження став аналіз наявних у літературі підходів до визначення коефіцієнтів коактивації та графічний аналіз їхніх змін за різної відносної електричної активності м’язів-антагоністів.
Матеріали й методи. Виконано аналіз публікацій, у яких зазначено формули для кількісного визначення коефіцієнта коактивації (КК) скелетних м’язів людини на основі величини електричної активності цих м’язів. Аналіз змін КК за умов різної нормалізованої амплітуди інтерференційної електроміограми м’язів-антагоністів виконували шляхом побудови графічних залежностей та їх подальшого опису.


Повний текст:

PDF

Посилання


Latash M. L. (2018). Muscle coactivation: definitions, mechanisms, and functions. Journal of neurophysiology, 120(1), 88–104. https://doi.org/10.1152/ jn.00084.2018

Chen, B., Lee, Y. J., & Aruin, A. S. (2017). Role of point of application of perturbation in control of vertical posture. Experimental brain research, 235(11), 3449–3457. https://doi.org/10.1007/s00221–017–5069–2

Lee, Y. J., Chen, B., & Aruin, A. S. (2015). Older adults utilize less efficient postural control when performing pushing task. Journal of electromyography and kinesiology: official journal of the International Society of Electrophysiological Kinesiology, 25(6), 966–972. https://doi.org/10.1016/j.jelekin.2015.09.002

Rozand, V., Senefeld, J. W., Hassanlouei, H., & Hunter, S. K. (2017). Voluntary activation and variability during maximal dynamic contractions with aging. European journal of applied physiology, 117(12), 2493–2507. https://doi.org/10.1007/s00421–017–3737–3

Hirai, H., Miyazaki, F., Naritomi, H., Koba, K., Oku, T., Uno, K., Uemura, M., Nishi, T., Kageyama, M., & Krebs, H. I. (2015). On the Origin of Muscle Synergies: Invariant Balance in the Co-activation of Agonist and Antagonist Muscle Pairs. Frontiers in bioengineering and biotechnology, 3, 192. https://doi.org/10.3389/ fbioe.2015.00192

Rinaldi, M., Ranavolo, A., Conforto, S., Martino, G., Draicchio, F., Conte, C., Varrecchia, T., Bini, F., Casali, C., Pierelli, F., & Serrao, M. (2017). Increased lower limb muscle coactivation reduces gait performance and increases metabolic cost in patients with hereditary spastic paraparesis. Clinical biomechanics (Bristol, Avon), 48, 63–72. https://doi.org/10.1016/j.clinbiomech.2017.07.013

Chow, J. W., Yablon, S. A., & Stokic, D. S. (2017). Intrathecal baclofen bolus reduces exaggerated extensor coactivation during pre-swing and early-s wing of gait after acquired brain injury. Clinical neurophysiology: official journal of the International Federation of Clinical Neurophysiology, 128(5), 725–733. https://doi.

org/10.1016/j.clinph.2017.02.017

Nielsen J. B. (2016). Human Spinal Motor Control. Annual review of neuroscience, 39, 81–101. https://doi.org/10.1146/annurev-n euro-070815–013913

Neige, C., Massé- Alarie, H., Gagné, M., Bouyer, L. J., & Mercier, C. (2017). Modulation of corticospinal output in agonist and antagonist proximal arm muscles during motor preparation. PloS one, 12(11), e0188801. https://doi.org/10.1371/journal. pone.0188801

Mari, S., Serrao, M., Casali, C., Conte, C., Martino, G., Ranavolo, A., Coppola, G., Draicchio, F., Padua, L., Sandrini, G., & Pierelli, F. (2014). Lower limb antagonist muscle co-activation and its relationship with gait parameters in cerebellar ataxia. Cerebellum (London, England), 13(2), 226–236. https://doi. org/10.1007/s12311–013–0533–4

Feldman AG. Referent Control of Action and Perception: Challenging Conventional Theories in Behavioral Science. New York: Springer, 2015. doi:10.1007/978–1–4939–2736–4.

Jemili, H., Mejri, M. A., Sioud, R., Bouhlel, E., & Amri, M. (2017). Changes in muscle activity during karate guiaku-zuki-punch and kiza-mawashi- guirikick after specific training in elite athletes. Science & Sports, 32(2), 73–81. https://doi.org/10.1016/j. scispo.2016.11.002

Rinaldi, M., Nasr, Y., Atef, G., Bini, F., Varrecchia, T., Conte, C., Chini, G., Ranavolo, A., Draicchio, F., Pierelli, F., Amin, M., Marinozzi, F., & Serrao, M. (2018). Biomechanical characterization of the Junzuki karate punch: indexes of performance. European Journal of Sport Science, 18(6), 796–805. https://doi.org/10.

/17461391.2018.1455899

Quinzi, F., Camomilla, V., Felici, F., Di Mario, A., & Sbriccoli, P. (2013). Differences in neuromuscular control between impact and no impact roundhouse kick in athletes of different skill levels. Journal of Electromyography and Kinesiology, 23(1), 140–150. https://doi.org/10.1016/j.jelekin.2012.09.006

Quinzi, F., Camomilla, V., Felici, F., Di Mario, A., & Sbriccoli, P. (2014). Agonist and antagonist muscle activation in elite athletes: influence of age. European Journal of Applied Physiology, 115(1), 47–56. https://doi.org/10.1007/s00421–014–2990-y

Du, W., Li, H., Mumini, O. O., Chen, W., & Wang, L. (2018). The co-contraction features of the lumbar muscle in patients with and without low back pain during multi-m ovements. У 2018 IEEE 15th International Conference on Wearable and Implantable Body Sensor Networks (BSN). IEEE. https://doi.org/10.1109/ bsn.2018.8329652

Chae, J., Yang, G., Park, B. K., & Labatia, I. (2002). Muscle Weakness and Cocontraction in Upper Limb Hemiparesis: Relationship to Motor Impairment and Physical Disability. Neurorehabilitation and Neural Repair, 16(3), 241–248. https://doi.

org/10.1177/154596830201600303

Li, G., Shourijeh, M. S., Ao, D., Patten, C., & Fregly, B. J. (2021). How Well Do Commonly Used Co-contraction Indices Approximate Lower Limb Joint Stiffness Trends During Gait for Individuals Post-stroke? Frontiers in Bioengineering and Biotechnology, 8. https://doi.org/10.3389/fbioe.2020.588908

Eken, M. M., Dallmeijer, A. J., Doorenbosch, C. A. M., Dekkers, H., Becher, J. G., & Houdijk, H. (2016). Coactivation During Dynamometry Testing in Adolescents With Spastic Cerebral Palsy. Physical Therapy, 96(9), 1438–1447. https://doi.org/10.2522/ptj.20140448

Chandran, V. D., Calalo, J. A., Dixon, P. C., Denner- lein, J. T., Schiffman, J. M., & Pal, S. (2019). Knee muscle co-contractions are greater in old compared to young adults during walking and stair use. Gait & Posture, 73, 315–322. https://doi.org/10.1016/j. gaitpost.2019.07.501

DaSilva, M. M., Chandran, V. D., Dixon, P. C., Loh, J. M., Dennerlein, J. T., Schiffman, J. M., & Pal, S. (2021). Muscle co-contractions are greater in older adults during walking at self-selected speeds over uneven compared to even surfaces. Journal of Biomechanics, 128, 110718. https://doi.org/10.1016/j. jbiomech.2021.110718

Piche, E., Chorin, F., Zory, R., Duarte Freitas, P., Guerin, O., & Gerus, P. (2022). Metabolic cost and co-contraction during walking at different speeds in young and old adults. Gait & Posture, 91, 111–116. https://doi.org/10.1016/j.gaitpost.2021.10.014

Woods, S., O’Mahoney, C., McKiel, A., Natale, L., & Falk, B. (2022). Child- Adult differences in antagonist muscle coactivation: A systematic review. Journal of Electromyography and Kinesiology, 102727. https://doi. org/10.1016/j.jelekin.2022.102727

Falk, J., Strandkvist, V., Pauelsen, M., Vikman, I., Nyberg, L., & Röijezon, U. (2022). Increased co-contraction reaction during a surface perturbation is associated with unsuccessful postural control among older adults. BMC geriatrics, 22(1), 438. https://doi. org/10.1186/s12877–022–03123–2

Divjak, M., Sedej, G., Murks, N., Gerževič, M., Marusic, U., Pišot, R., Šimunič, B., & Holobar, A. (2022). Inter- Person Differences in Isometric Coactivations of Triceps Surae and Tibialis Anterior Decrease in Young, but Not in Older Adults After 14 Days of Bed Rest. Frontiers in Physiology, 12. https://doi.org/10.3389/ fphys.2021.809243

Moreira, P. V. S., Goethel, M. F., Cardozo, A. C., & Gonçalves, M. (2015). Neuromuscular Performance of Dollyo Chagui. У International Conference on Biomechanics in Sports.

Kellis, E., Zafeiridis, A., & Amiridis, I. G. (2011). Muscle Coactivation Before and After the Impact Phase of Running Following Isokinetic Fatigue. Journal of Athletic Training, 46(1), 11–19. https://doi. org/10.4085/1062–6050–46.1.11

Arellano, C. J., Caha, D., Hennessey, J. E., Amiridis, I. G., Baudry, S., & Enoka, R. M. (2016). Fatigue- induced adjustment in antagonist coactivation by old adults during a steadiness task. Journal of Applied Physiology, 120(9), 1039–1046. https://doi.org/10.1152/ japplphysiol.00908.2015

Sozen, H., Erdogan, E., Ince, A., & Soylu, A. R. (2019). Determination of Electromyography-B ased Coordinated Fatigue Levels in Agonist and Antagonist Muscles of the Thigh during Squat Press Exercise.

Annals of Applied Sport Science, 7(3), 0. https://doi. org/10.29252/aassjournal.738

Nara, S., Kaur, M., Shaw, D., & Bhatia, D. (2016). Significance of Bilateral Coactivation Ratio for Analysis of Neuromuscular Fatigue of Selected Knee Extensor Muscles during Isometric Contractions at 0º in Sportspersons. Biomedical Science and Engineering, 4(2), 31–36. DOI: 10.12691/bse-4–2–1

Wang, L., Niu, W., Wang, K., Zhang, S., Li, L., & Lu, T. (2019). Badminton players show a lower coactivation and higher beta band intermuscular interactions of ankle antagonist muscles during isokinetic exercise. Medical & Biological Engineering & Computing, 57(11),

–2415. https://doi.org/10.1007/s11517–019– 02040–8

Aagaard, P., Simonsen, E. B., Andersen, J. L., Magnusson, S. P., Bojsen- Møller, F., & Dyhre-P oulsen, P. (2000). Antagonist muscle coactivation during isokinetic knee extension. Scandinavian Journal of Medicine & Science in Sports, 10(2), 58–67. https://doi.org/10.1034/j.1600–0838.2000.010002058.x

Souissi, H., Zory, R., Bredin, J., & Gerus, P. (2017). Comparison of methodologies to assess muscle co-contraction during gait. Journal of biomechanics, 57, 141–145. https://doi.org/10.1016/j.jbiomech.2017.03.029

Assila, N., Pizzolato, C., Martinez, R., Lloyd, D. G., & Begon, M. (2020). EMG-Assisted Algorithm to Account for Shoulder Muscles Co-C ontraction in Overhead Manual Handling. Applied Sciences, 10(10), 3522. https://doi.org/10.3390/app10103522

Ervilha, U. F., Graven- Nielsen, T., & Duarte, M. (2012). A simple test of muscle coactivation estimation using electromyography. Brazilian Journal of Medical and Biological Research, 45(10), 977–981. https://doi.org/10.1590/s0100–879x2012007500092

Wright, J., Ball, N., & Wood, L. (2009). Fatigue, H/Q ratios and muscle coactivation in recreational football players. Isokinetics and Exercise Science, 17(3), 161–167. https://doi.org/10.3233/ies-2009–0348

Le, P., Aurand, A., Walter, B. A., Best, T. M., Khan, S. N., Mendel, E., & Marras, W. S. (2017). Development of a lumbar EMG-based coactivation index for the assessment of complex dynamic tasks. Ergonomics, 61(3), 381–389. https://doi.org/10.1080/00140139. 2017.1360520


Посилання

  • Поки немає зовнішніх посилань.